

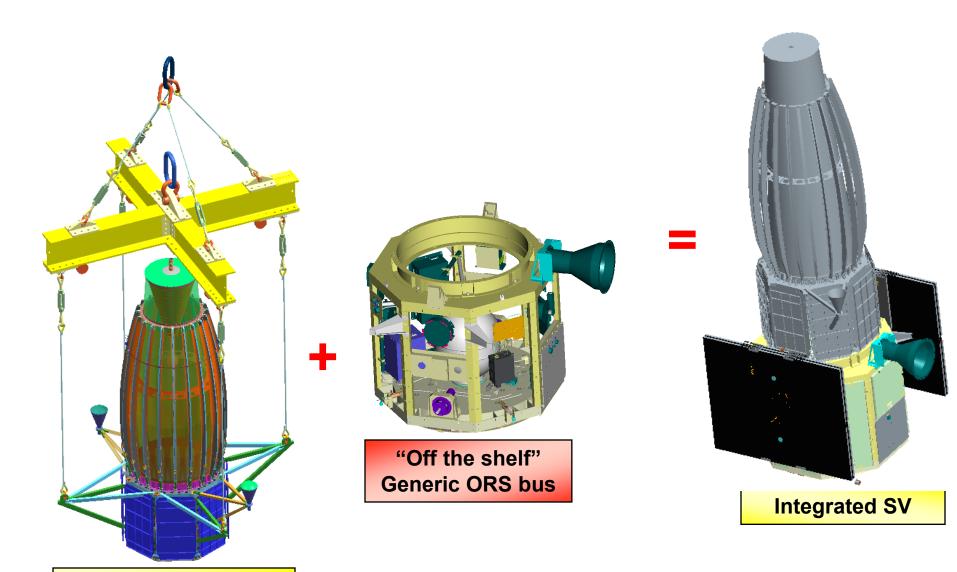
Spacewire cabling in an Operationally Responsive Space Environment

Derek Schierlmann and Paul Jaffe
Naval Research Laboratory
Naval Center for Space Technology, Code 8243
dschierlmann@space.nrl.navy.mil, paul.jaffe@nrl.navy.mil
31AUG07

25-Sep-07

Agenda

2

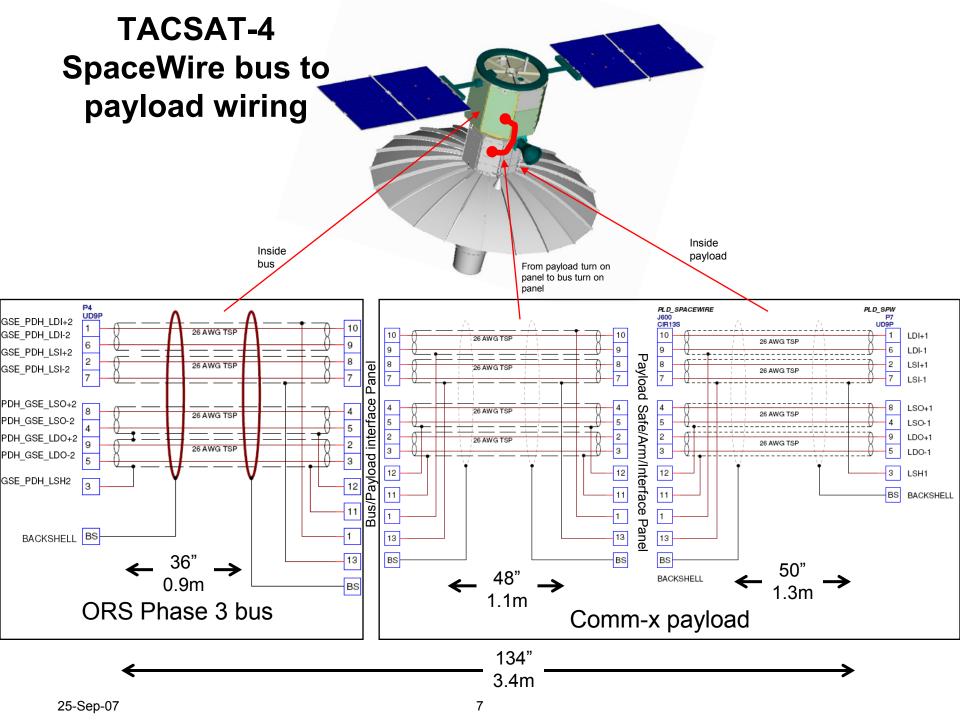

- Introduction
 - What is ORS?
 - What's a depot?
- Problem
 - Connectors
- TacSat-4 SpaceWire
 - Cabling design
 - Qualification testing plan
- Results
 - Differential impedance
 - Time domain waveforms
 - BERT testing
- Summary
- Backup Slides

25-Sep-07

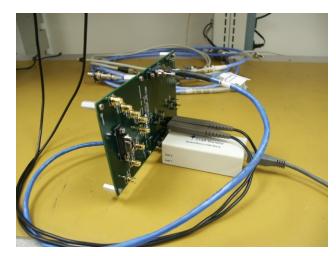
What is ORS?

- ORS stands for Operationally Responsive Space.
- The aim is to make space assets more accessible to the commanders in the field.
 - ORS satellites can be considered "the UAVs of Space".
- The vision is call-up to launch in less than seven days.
- This vision requires having inventory of space assets ready.
 - Use pre-built busses and payloads
 - Mix and match
 - Stored in a depot
 - Upon call up, mate bus to payload, then stack and launch
 - Want to leverage/enable Industry for cost savings
 - Any manufacturer can build a bus or payload
 - Will not be build to point design, is build to requirements
- The satellites in question are small, nominally < 500 kg.
- TacSat (tactical satellite) experiments are part of the ORS effort.

Depot Concept

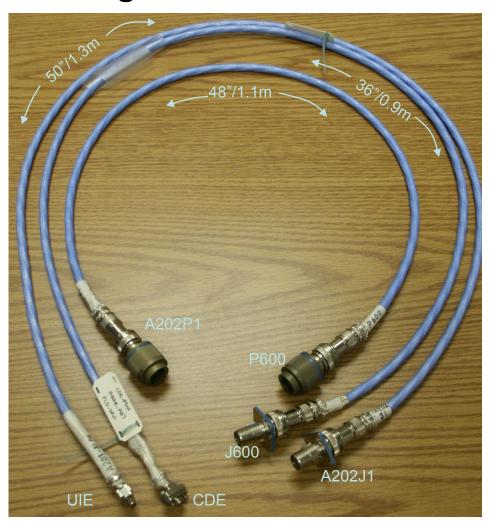

Mission specific Payload

Operationally Responsive Space Requirements for Spacewire Connectors


- Suitable for Space Applications
- Signal Integrity and Impedance control
 - Ability to reliably support Spacewire
- Availability
 - Should be fairly widely available
- Cost
 - Should not be exorbitantly expensive
- Suitable for Depot Operations
 - Quick, reliable connection
 - Usable by minimally trained personnel
 - No torque requirements
 - No need for tools

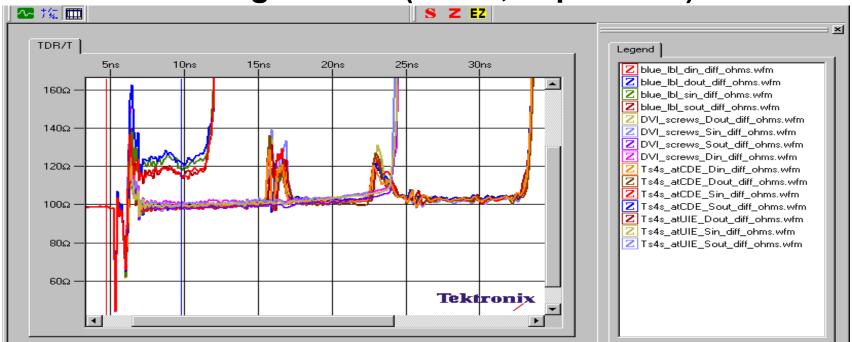
Connectors Considered

	Cost	Lead Time	Availability	Depot Assembly	Impedance Control	EMI Control	
D connector	Low	Short	High	Fairly easy	Low	Low	
High density D	Low	Short	High	Fairly easy	Low	Low	
Micro D	Med	Long	Low	Tricky	Low	Low	
Gore JWST twinax	High	Long	Low	Fairly easy	Very good	Very good	
38999	Med	Med	Med	Simple	Med	Med	


Test Cable Images

Blue reference cable, test board and SpaceWire brick in waveform capture configuration

DVI – heritage Reference cable



Tacsat-4 flight spacewire cable (unmated)

Tacsat-4 / NRL's SpaceWire Testing (To date)

- Tests were baselined against a COTS 3m (DVI-heritage) cable and a 0.5m cable from Dynamic Engineering
- Testing includes:
 - compare v. baseline
 - Differential Impedance
 - Via TDR
 - Limited scope traces
 - Data rate tests
- Data rate testing done with the STAR-Dundee SpaceWire/USB brick
 - In loopback mode (with and without test board inline)
- Test cables were hand fabricated by NRL's harness group.
 - Used the TacSat-4 flight cables
 - Segment lengths as shown above (3.4m, total)
 - Pinout chosen by graphically using "ORS Spacewire Connector (10-35P) conductor configuration" slide in this presentation
 - · Attempted to make conductor configuration for each pair as uniform as possible
 - Attempted to align E and H fields
- Test was performed at max speed for driver (136Mbs)
- All scope probing was done on a Tex TDS644A with a Tex P6246 400MHz diff probe.
 - Input Capacitance <1pF
 - Input resistance ~200kΩ
- TDR Testing was done on a Tektronix DSA8200 with a 80E04 differential TDR head
 - Impedance correction done in Iconnect (80SICMX)
- A spacewire test board (test fixture) was fabricated to facilitate easier testing

Testing Results (Cable, Impedance)

Conclusions

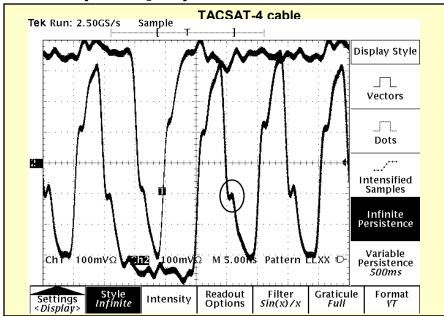
- Blue test cable is not 100Ω ! It is 120Ω .
- Grey/DVI Ref cable and TacSat-4 cables are a very consistent 100Ω
- The ORS 38999 Series II connector creates an impedance discontinuity of up to 40Ω for 2ns.
- The asymmetric impedance of the connector is less severe than in previous studies.
 - Because of cable layout, these traces go through the first connector pin to socket, then socket to pin through the second (and vice versa).
 - There is not a significant difference between traces taken from CDE or UIE end of cable.
 - There is a difference between the first connector and second.
 - Most likely due to loss of TDR resolution after the first discontinuity (from previous TDR experience)
 - This raises concerns about the discontinuities from the SMA, test board and first uD connector
 - When evaluating this connector, its best to look at the first instance of it in the above TDR traces.

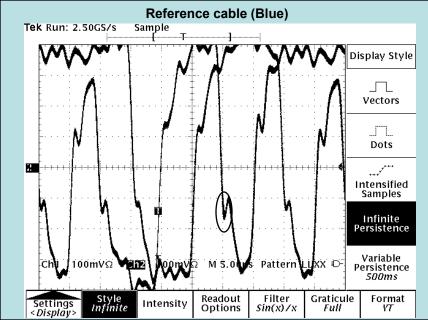
Testing Results (scope)

Conclusions

- Both cables run error-free at 136MHz with the spacewire brick in loopback mode
 - Adding/removing the test board doesn't affect link speed –except gray DVI cable
- Scope traces look almost identical

Issues/Concerns


- Non-monotonic leading edge (in circle)
 - Is on both traces, so is probably from the test set-up
- These traces were captured with a 500MHz scope using 400MHz probes...doubtful that was enough bandwidth.
- Why didn't the grey cable work?


Recommendations

- Previous testing at 61Mbs showed the same results, so the following are not expected to be a significantly different, but should be done for closure:
 - 1GHz probes and scope are on order, retake images with them
 - Work with Dundee to get the brick running at 200Mbs and retake the images

– Why no difference?

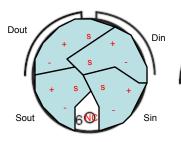
- Because signal spectral content is related mostly to rising edge and the driver produces the same edge rate at 61Mbs as it does at 136 or 200.
- What would make a difference?
 - Should compare eye diagrams of these cables

Summary

- TacSat-4's SpaceWire cable assembly is qualified to at least 100Mb/s
 - More testing might qualify it to 200Mb/s or faster operation
- Future SpaceWire Cable qualification recommendations:
 - compare v. baseline
 - Differential Impedance via TDR
 - Cross-talk, jitter and skew analysis (addition)
 - Limited scope traces
 - Add eye diagrams (add)
 - Standard time domain waveforms
 - Data rate and data compare tests
 - Perform at max speed for driver (200Mb/s?)
 - All scope probing on a >1GHz scope and probes
- Further work
 - As noted rerun scope, loopback tests at 200Mb/s with >1GHz scope and probes
 - Take eye diagrams, perform cross-talk, jitter and skew analysis

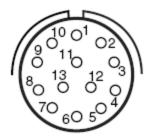
Backup slides

References

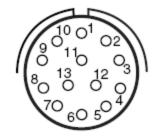

- Allen, Shaune. "SpaceWire Physical Layer Issues." 2006 MAPLD International Conference; Washington, D.C. September 25, 2006
- Brooks, Douglas. "Differential Impedance: What's the Difference?" Printed Circuit Design. August, 1998.
- Heikkila, Tuomo. "Differential Impedance Measurements with the Tektronix 8000B Series Instruments." [Online]
 Available http://www.tek.com/Measurement/cgi bin/framed.pl?Document=/Measurement/App_Notes/85_16644/eng/&FrameSet=oscilloscopes, 2004
- Jaffe, Paul "SpaceWire Cabling in an Operationally Responsive Space Environment," NRL NCST Code 8243, Washington, DC, 2007, to be published.
- Johnson, Howard and Graham, Martin. High-Speed Digital Design: A Handbook of Black Magic. New Jersey: Prentice Hall PTR, 1993.
- Johnson, Howard. [Online Papers] Available http://www.sigcon.com/, 1998-2005
- Lanza, P. "EDR HSSL Protocol and Implementation," EDR-TN-Al0014. 2002.
- Mueller, Joachim W.L. "Design Challenges of an Advanced SpaceWire Assembly for High Speed Inter-Unit Data Link." 2006 MAPLD International Conference; Washington, D.C. September 25, 2006
- Operationally Responsive Space (ORS) General Bus Standard (GBS), ORSBS-002/NCST-S-SB001 Revision 2, Feb. 2007. Available: https://projects.nrl.navy.mil/standardbus/
- Operationally Responsive Space (ORS) Payload Developer's Guide (PDG), ORSBS-003/NCST-IDS-SB001 Revision 2, Feb. 2007. Available: https://projects.nrl.navy.mil/standardbus/
- Paul, Clayton R. Introduction to Electromagnetic Compatibility. John Wiley & Sons, 1992.
- Powner, et al., "Geostationary Operational Environmental Satellites: Steps Remain in Incorporating Lesson Learned from Other Satellite Programs," US GAO, Washington, DC, Rep. GAO-06-993, Sep. 2006. Available: http://www.gao.gov/new.items/d06993.pdf
- Powner, et al., "A Standard Satellite Bus for National Security Space Missions: Phase I Analysis in Support of OSD/OFT Joint Warfighting Space Satellite Standards Efforts," MIT Lincoln Laboratory, Lexington, MA, Air Force Contract No. FA8721-05-C-0002, Mar. 2005. Available: https://projects.nrl.navy.mil/standardbus/
- Sadiku, Matthew N. O. Elements of Electromagnetics 2nd Edition. Saunders College Publishing, 1994.

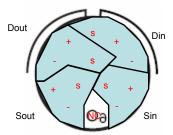
TacSat-4 Spacewire Implementation Notes

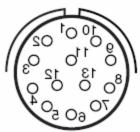
- Spacewire "driver" is Payload Data Handler designed by Greg Clifford, of SEI
 - Partial heritage to SECCHI design
 - Details available from Greg Clifford (<u>gclifford@silvereng.com</u>) or via ORS Phase III Bus CDR material
- Spacewire "receiver" is UIE
 - Details TBR
 - Spacewire experiment is a Payload distinct from comm-x
- Interconnect configuration:
 - 38999 Series II (10-35 conductor configuration) 13-pos Circular connector:
 - D38999/40FB35SN (447HS166M11-10-4 backshell) for the bulkhead connector (J506/J600)
 - D38999/46FB35PN (same backshell) for the payload-side cable (P506/P600)
 - 22 ga contact.
 - 4-8wk lead time to get exact connector
 - Our harness group built the spacewire cable assemblies Gore-Tex 26AWG (GSC-05-82730-00) space wire cable (W. L. Gore & Associates GmbH)
 - 3 segment cable (as above) with a total length 3.4m
 - · CDE to interface panel
 - I/F panel to intermediate payload panel
 - payload intermediate i/f also a 38999 series II
 - Intermediate payload panel to payload Spwr load.
- One path from CDE to Payload (as noted above)
- One path from CDE to EGSE (debug port)
 - Two segment in ambient testing
 - Three segment in TVAC

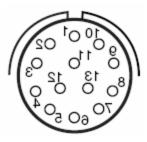

ORS Spacewire Connector (10-35P) conductor configuration

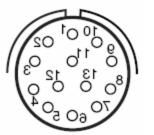

Bus to payload (@J506/J600) front of P506/P600, rear of J506/J600

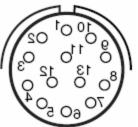


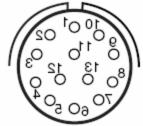


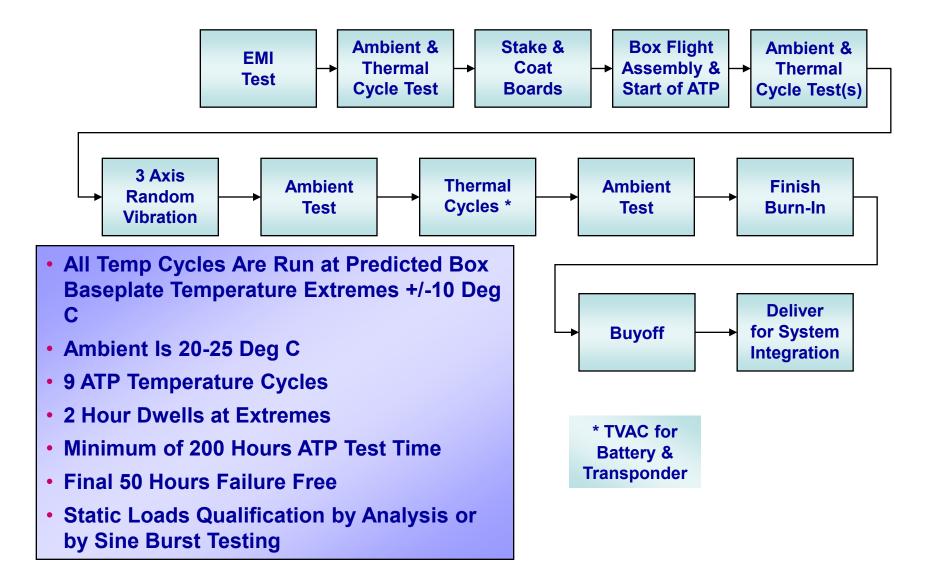


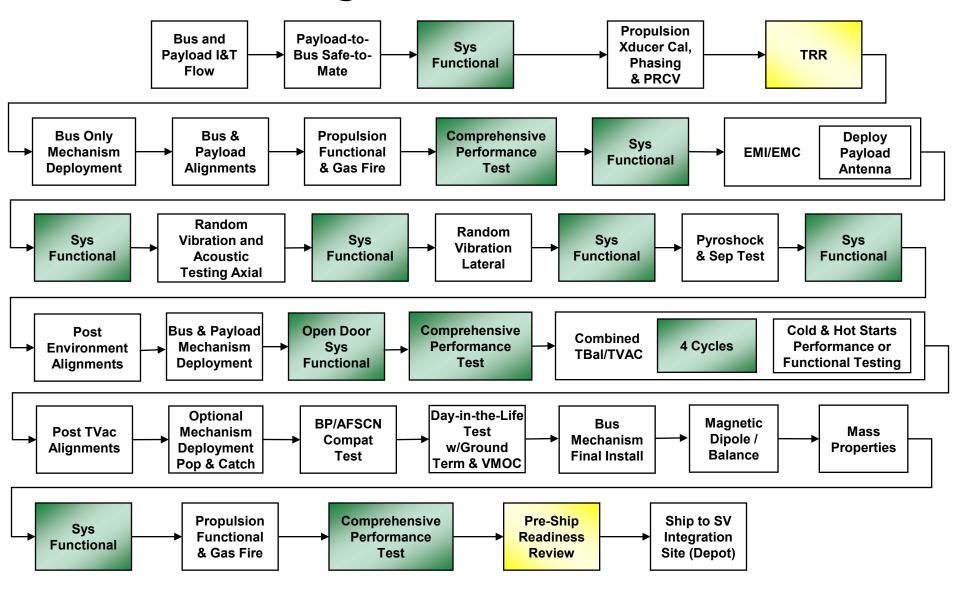



Payload to bus (@J506/J600)


rear of P506/P600, front of J506/J600







ORS BUS Generic Component Testing Flow

Integrated SV Test Flow

Space Vehicle Testing

System Level Structural Verification

• Random Vibration Test Levels, 1 min. Duration

Frequency PSD

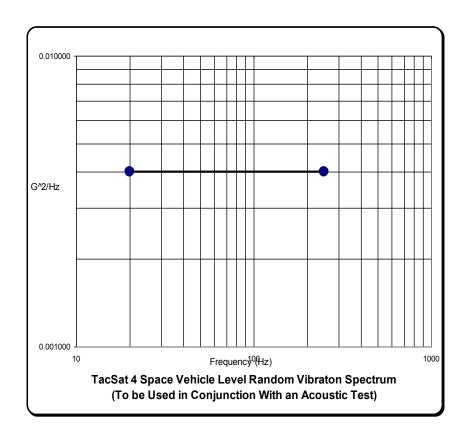
20 - 250 0.004

Overall 0.96 g_{rms}

 Acceleration Response Limiting Allowed for Random Vibration Acceleration Responses Not to Exceed Coupled Loads Responses

Acoustic Test: Test Level: Overall SPL 139.2 dB

Test Duration: One Minute


Shock Test: Two Clamp Band Firings

Two Solar Array Releases (Pop and Catch)

Test Levels and Durations

	Protoflight
Random Vibration	Flight + 3 dB Minimum of One Minute (Notch to Insure Responses Do Not Exceed CLA Results)
Acoustic	Flight + 3 dB Minimum of One Minute
Pyrotechnic Shock	Fire Ordnance Two Times
Thermal Vacuum	10 Degrees C Above and Below Design Range

Random Vibration Spectrum

Workmanship SV Level

0.96 Grms

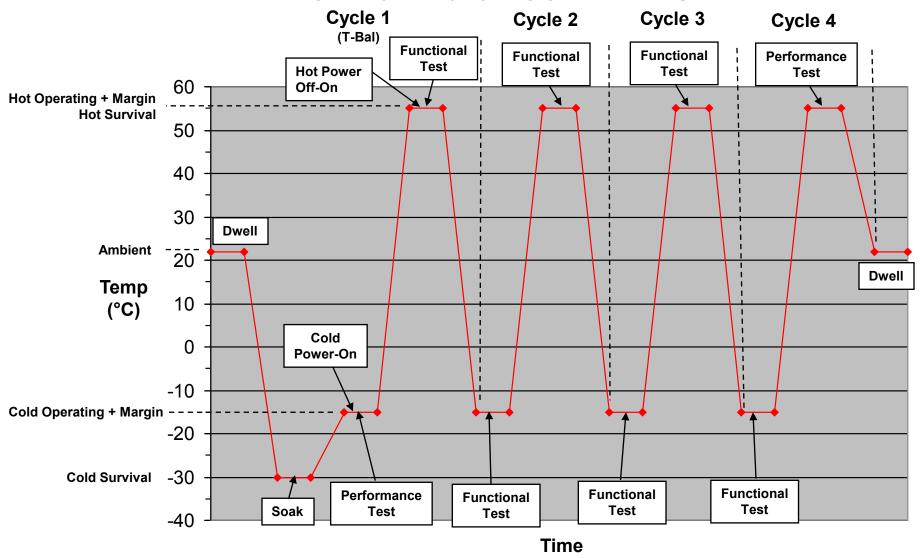
Frequency (Hz) G^2/Hz

20 0.004000 250 0.004000

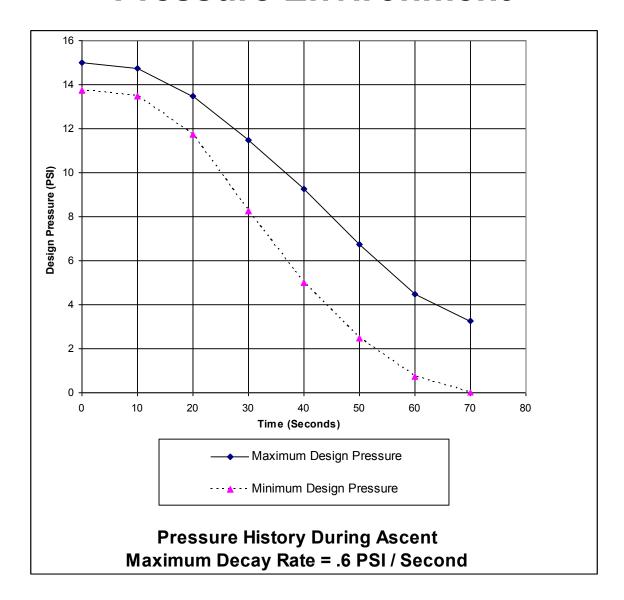
Apply in 3 Orthogonal Axes One Minute per Axis

Acoustic Environment

One Third Octave	Flight Level
Frequency (Hz)	SPL (dB)
32	119.8
40	121.9
50	122.6
63	123.1
80	124.5
100	125.4
125	125.9
160	129.5
200	130.2
250	130.5
315	130.4
400	130.1
500	128.4
630	123.9
800	121.5
1000	117.9
1250	113.9
1600	112.5
2000	111.7
2500	112.3
3150	111.7
4000	110.3
5000	112.2
6300	106.9
8000	103.1
10000	102.5
OA	139.2


Test Levels

Duration (Minutes)


Flight Unit (Protoflight Acceptance Level)

1

Thermal Balance - TVAC

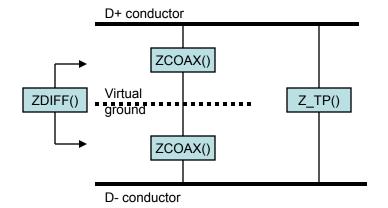
Pressure Environment

Bus Integration and Test Definition of Test Terms Continued

Mechanical Test Terminology

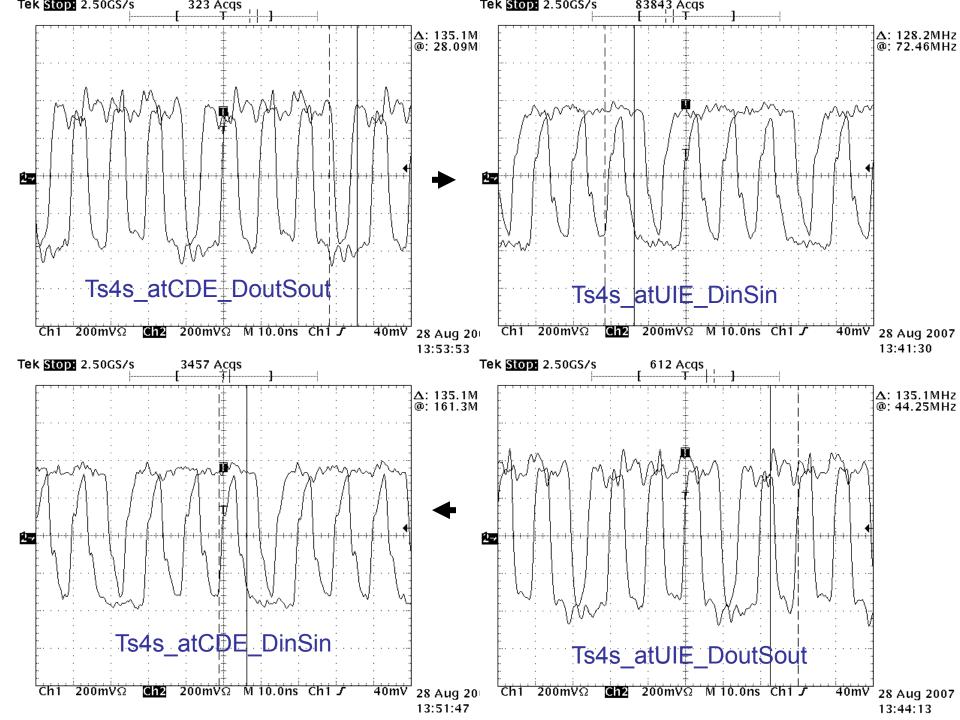
- Modal Testing
 - Characterize system's modal response relative to a reference response
- Loads Testing/Qualification (Not shown in test flow)
 - By Analysis With No Test Factors of Safety, or
 - Static or Quasi-Static Test at 1.25 x Design Limit Loads for the Bus
- Vibration and Acoustic Testing
 - Acceptance Test Levels = Expected Flight Environment for 1 Minute
 - Protoflight Test Levels = Flight +3 dB for 1 Minute
 - Qualification Test Levels = Flight +6 dB for 1 Minute
- PyroShock and Separation Testing
 - Twice on Flight Spacecraft
 - Light Band
- Thermal
 - Acceptance Test Range = 5 Deg C Above and Below Design Range
 - Protoflight Test Range = 10 Deg C Above and Below Design Range
 - Qualification Test Range = 15 Deg C Above and Below Design Range

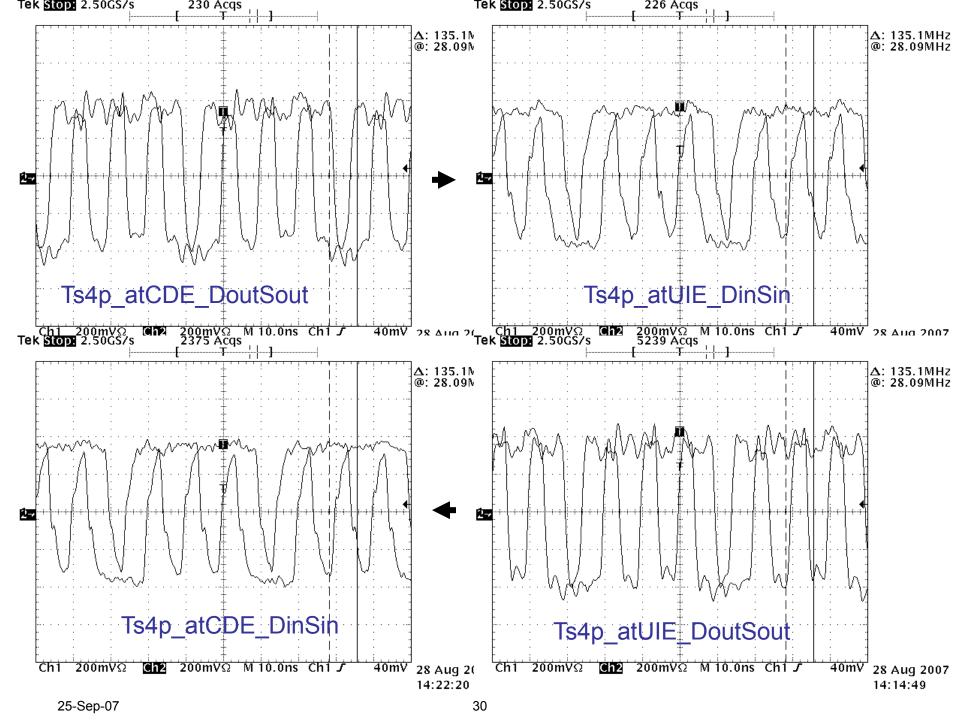
ORS Bus Integration and Test Definition of Test Terms Continued

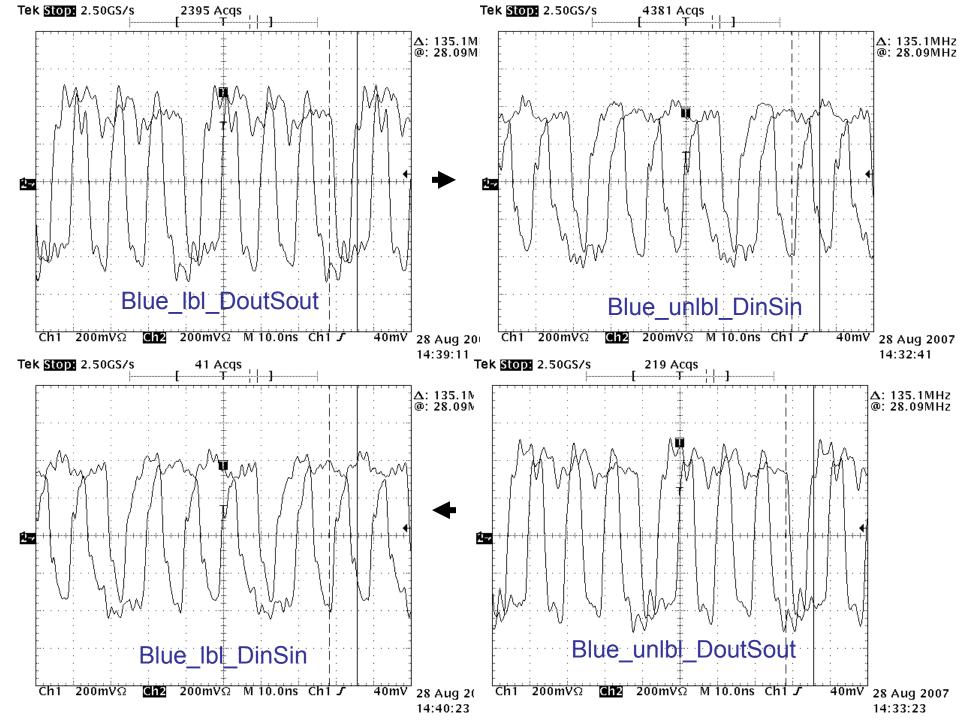

Electrical Test Terminology

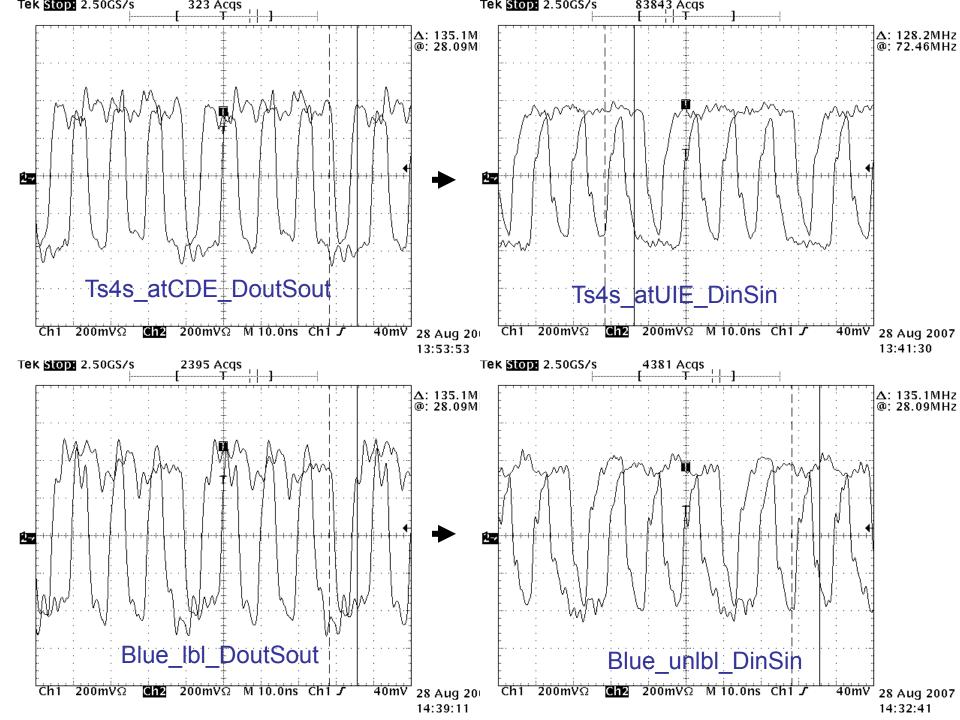
- Health Test :
 - Test Port only, most flight like configuration
 - Typically performed at one voltage
 - · Performed with the ELSE
 - · Open loop testing
- System Functional :
 - Performed with EAGE
 - Typically performed at one voltage,
 - Partly closed loop, for ACS test cases.
 - No RF testing
- Comprehensive Performance Test (CPT):
 - Equivalent to System Functional
 - Performed at 3 different voltages.
 - Scripts may exercise components further than System Functional Tests
 - Includes open loop testing e.g. RF, EPS, TCS, mechanisms, and payload sim telemetry
- Day in the life test :
 - Performed with EAGE
 - Typically performed at predicted beginning of life voltage
 - Testing script reflects expected orbital environments
 - System is exercised and reacts as it would be on orbit for a given orbital day

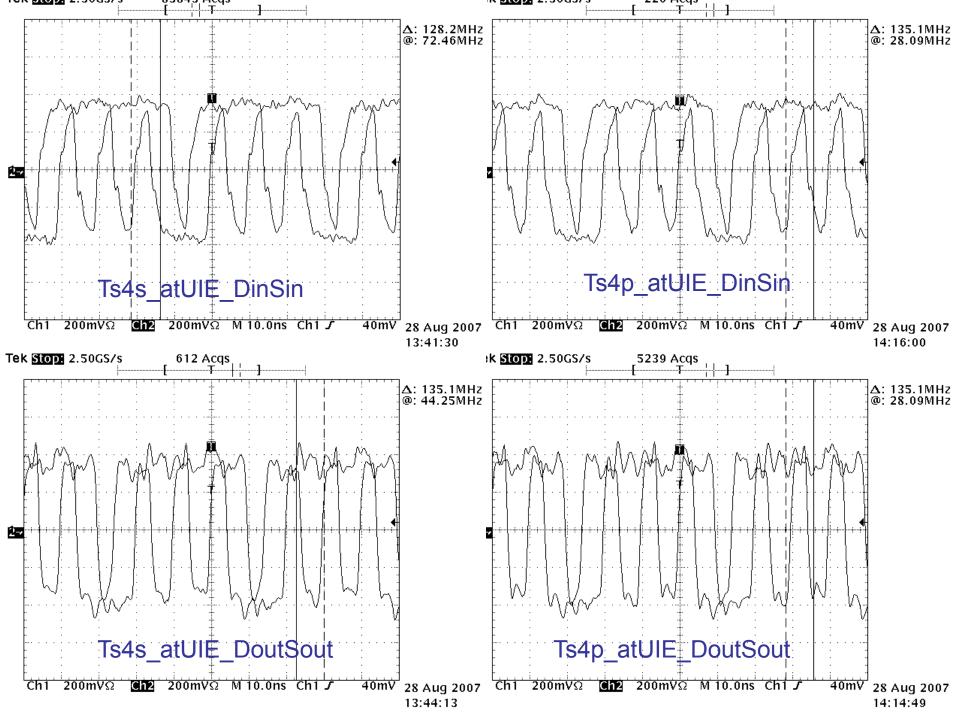
Quick Formulas for Impedance Calculations

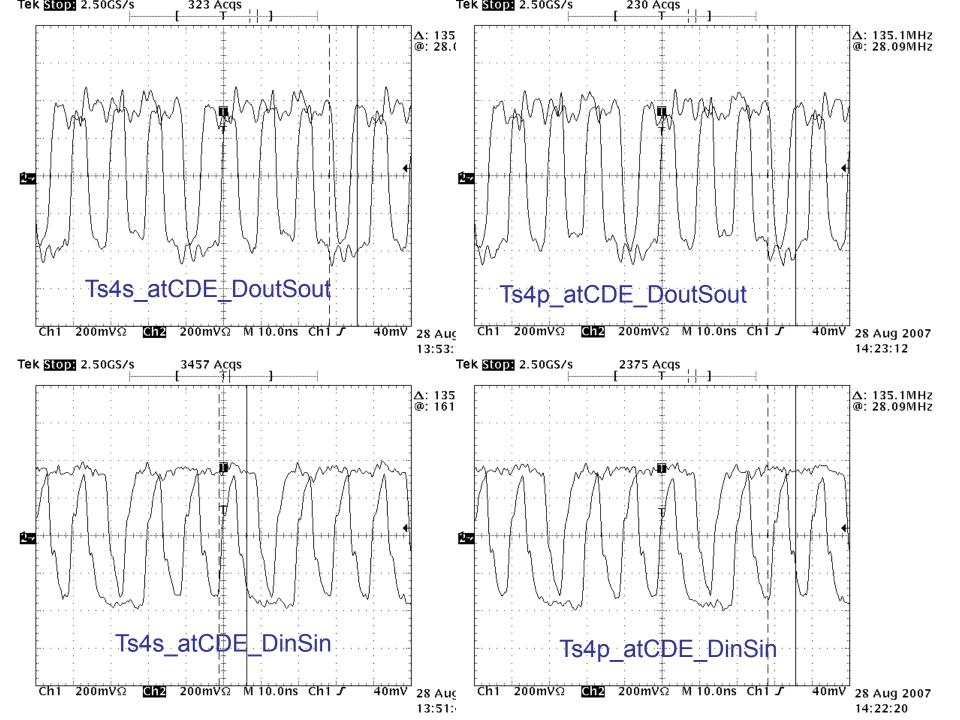

ε0 =	8.85E-12	F/m	μ0 =	1.25664E-0	6 H/m											
	Inner		Outer													
								Prop								
								delay		r	I_coax	c_coax	I_tp	c_tp	I_tot	c_tot
εr	AWG	OD	OOD	Wire Dia	Z_coa	x Z_tp	Z_diff_est	(ps/in)	Notes	$(m\Omega/ft)$	(µH/ft)	(pF/ft)	(µH/ft)	(pF/ft)	(µH/ft)	(pF/ft)
2.1	26	36	92	1	6 14	5 125	67	120	Tufflite TL medium wall 26GA TSP	40.8	1.1	66.5	0.2	12.2		
2.1	24	40	100	2	0 13	3 114	61	120	Tufflite TL medium wall 24GA TSP	25.7	1.0	72.8	0.2	13.6		
2.9	26	36	85	1	6 1 ⁻	8 106	56	141	Kapton (150) 26GA TSP	40.8	1.0	96.2	0.2	16.9		
2.9	26	36	#####	1	6 1603	1 106	106	141	Kapton (150) 26GA TP	40.8	136.9	0.7	0.2	16.9		


- One of the lessons learned from this testing was a simple formula for calculating differential impedance
- The above spreadsheet has been surprisingly accurate in predicting differential impedance when compared to TDR results
- Formulas are from Johnson and Graham Appendix c, pg 428-429 and 424-425
- They are combined using the logic at right
 - For ZCOAX(), assume one conductor is at the center of the overall shield
 - Z_diff = (2*Z_coax) || Z_tp




Waveforms


- TacSat-4 (solder cups only)
- TacSat-4 (with pigtails at UIE uD)
- Blue ref cable
- Blue v. TacSat-4 (soldercup)
- TacSat-4 soldercup v. pigtail 1 of 2
- TacSat-4 soldercup v. pigtail 2 of 2



Distances, times to remember

- Segments lengths in inches, 1 way transit time, and round trip transit time
 - TS4 cables, er = \sim 1.5, prop velocity = 250ps/in
 - CDE to Bus IF = 36", 6.5ns(1w)/13ns(rt)
 - Bus IF to Payload IF = 48 ", 12ns(1w)/24ns(rt)
 - Payload IF to UIE = 50 ", 12.5ns(1w)/25ns(rt)
 - CDE to Payload IF = 84", 21ns(1w)/42ns(rt)
 - UIE to Bus IF = 98", 24.5ns(1w)/49ns(rt)
 - Total length = 134", 33.5ns(1w)/67ns(rt)
 - Blue Ref cable, er = \sim 3 (guess), prop velocity = 170ps/in
 - Total length = 26", 4.4ns(1w)/8.8ns(rt)

Recent NRL High Speed Data Designs

- NPOESS Firewire, Ken Wolfram
 - Link, DPHY, and APHY chips
- STEREO (SECCHI)
 - Board Design by Greg Clifford, of SEI.
 - Details available from Greg Clifford (<u>gclifford@silvereng.com</u>) or via SECCHI design review material
 - Of note:
 - SECCHI TVAC cables were created and used with 37P circular connector inline
 - 3 pairs of COTS spacewire (DVI heritage) cables were cut up and a 37P circular connector (D507-37S-059) was attached to the end.
 - A DM5623-37PP was used to penetrate the chamber wall
 - The vacuum portion of the cable assembly was created with 26GA TSP and an overall shield. This terminated in uDs on the UUT end and a 37S Circular on the chamber wall end (13084 37S-5020)
 - No additional qualification, no signal integrity testing was done on the cable solution
 - Cable configuration worked fine at 100Mb/s
 - Only problems encountered were workmanship:
 - The 28GA wire in the COTS cables kept coming loose from the 37-CIR
 - Flight cables were COTS spacewire

Derek Schierlmann Background

- Electronics Engineer, NRL 2003- present
 - Electrical I&T lead TACSAT-4 / ORS phase-3 bus
- Hardware Design Engineer, Hewlett-Packard Technical Workstation Laboratory 2000-2003
 - USB Subsystem Lead Engineer
- Senior Software Support Engineer, Hewlett-Packard 1995 2000
- Masters of Electrical Engineering, Colorado State University, 2003
- Master's thesis: Transmission time prediction for meander delay lines in a common PCB geometry
 - Use of Ansoft HFSS, HPSpice and Matlab to suggest an equation to quantify the actual propagation speed of a signal through a meandering delay line of printed circuit board traces.
- Bachelors of Electrical Engineering, Auburn University 1993